Linearised Gravitational Wave Solution to the Einstein Field Equations

A weak gravitational field has the space-time metric

$$
g_{a b}=\eta_{a b}+\epsilon h_{a b}+O\left(\epsilon^{2}\right)
$$

and its inverse is then given by

$$
g^{a b}=\eta^{a b}-\epsilon h^{a b}+O\left(\epsilon^{2}\right)
$$

where $h^{a b}=\eta^{a c} \eta^{b d} h_{c d}$, so by definition

$$
\Gamma_{b c}^{a}=\frac{1}{2} \epsilon \eta^{a d}\left(h_{b d, c}+h_{c d, b}-h_{b c, d}\right)+O\left(\epsilon^{2}\right)
$$

and it follows by definition

$$
\begin{align*}
R_{b c d}^{a} & =2 \Gamma_{b[d, c]}^{a}+\underbrace{2 \Gamma_{e[c] b}^{a} \Gamma_{d] b}^{e}}_{O\left(\epsilon^{2}\right)} \\
& =\frac{1}{2} \epsilon\left(h_{a d, b c}+h_{b c, a d}-h_{b d, a c}-h_{a c, b d}\right)+O\left(\epsilon^{2}\right) . \tag{1}
\end{align*}
$$

Hence

$$
R_{b d}=\frac{\epsilon}{2}\left(h_{d}{ }^{a}, b a+h_{b a, ~}{ }_{d}{ }^{a}-h_{b d,}{ }_{a}{ }_{a}-h_{a}{ }^{a}{ }_{, b d}\right)+O\left(\epsilon^{2}\right)
$$

Let $h=h^{c}{ }_{c}$ and define trace-reversed $\bar{h}_{a b}=h_{a b}-\frac{1}{2} h \eta_{a b}$ as well as $\bar{h}=\bar{h}_{c}^{c}$, then

$$
h_{a b}=\bar{h}_{a b}-\frac{1}{2} \bar{h} \eta_{a b} .
$$

Since

$$
-\square \bar{h}_{a b}+\bar{h}_{a, b c}^{c}+\bar{h}_{b, a c}^{c}+\frac{1}{2} \eta_{a b} \square \bar{h}=-\eta^{c d} h_{a b, c d}+\bar{h}_{a, b c}^{c}+\bar{h}_{b, a c}^{c}-h_{, a b}
$$

using the fact that $\Gamma=O(\epsilon)$, we have

$$
R_{a b}=\frac{\epsilon}{2}\left(-\square \bar{h}_{a b}+\bar{h}_{a, b c}^{c}+\bar{h}_{b, a c}^{c}+\frac{1}{2} \eta_{a b} \square \bar{h}\right)+O\left(\epsilon^{2}\right)
$$

where \square $=\eta^{a b} \nabla_{a} \nabla_{b}$.
By Einstein's field equations for a vacuum, $R_{a b}-\frac{1}{2} R g_{a b}=0$, whence to $O(\epsilon)$

$$
\begin{equation*}
-\square \bar{h}_{a b}+\bar{h}_{a}^{c}{ }_{, b c}+\bar{h}_{b, a c}^{c}-\bar{h}_{, c d}^{c d} \eta_{a b}=0 . \tag{2}
\end{equation*}
$$

Under the infinitesimal coordinate transformation (a gauge transformation and an isometry) $x^{a} \mapsto x^{a}+\epsilon f^{a}(x)$, we have

$$
x^{a} \mapsto \tilde{x}^{a}-\epsilon f^{a}\left(\tilde{x}^{a}\right)+O\left(\epsilon^{2}\right)
$$

and $\tilde{g}_{a b}=\frac{\partial x^{c}}{\partial \tilde{x}^{a}} \frac{\partial x^{d}}{\partial \tilde{x}^{d}} g_{c d}$ implies

$$
\tilde{g}_{a b}=g_{a b}-2 \epsilon f_{(a, b)}+O\left(\epsilon^{2}\right)
$$

so by comparison with the definition $g_{a b}$ we conclude

$$
h_{a b} \mapsto h_{a b}-2 f_{(a, b)}+O(\epsilon) .
$$

Taking this as the definition for $\tilde{h}_{a b}$ and bearing in mind that $\Gamma=O(\epsilon)$, we directly compute

$$
\tilde{h}_{a d, b c}+\tilde{h}_{b c, a d}-\tilde{h}_{b d, a c}-\tilde{h}_{a c, b d}=h_{a d, b c}+h_{b c, a d}-h_{b d, a c}-h_{a c, b d}
$$

as partial derivatives of f_{a} commute. Hence the curvature tensors are unchanged to leading order in ϵ.

Now $h \mapsto h-2 f^{a}{ }_{, a}$ and $\bar{h}_{a b} \mapsto \bar{h}_{a b}+f^{c}{ }_{, c} \eta_{a b}-2 f_{(a, b)}$ under the coordinate change,

$$
\bar{h}_{, b}^{a b} \mapsto \bar{h}_{, b}^{a b}-f^{a, b}{ }_{b}-f^{b, a}{ }_{b}+f_{, c b}^{c} \eta^{a b}+O(\epsilon)
$$

so by choosing $\square f^{a}=\bar{h}^{a b}{ }_{, b}$, then in the new coordinates $\bar{h}^{a b}{ }_{, b}=0$, from which we conclude that

$$
\square \bar{h}_{a b}=0 .
$$

But this means that

$$
\square \bar{h}=0 \Rightarrow \square h=0
$$

and consequently

$$
\begin{equation*}
\square h_{a b}=0 \tag{3}
\end{equation*}
$$

using the definition of $\bar{h}_{a b}$.

Consider a gravitational wave

$$
\begin{equation*}
h_{a b}=H_{a b} e^{i k_{b} x^{b}} \tag{4}
\end{equation*}
$$

in the gauge above, where $H_{a b, c}=0$. Then by direct substitution in (3) we find

$$
k^{d} k_{d}=0
$$

and

$$
\begin{equation*}
H_{a b} k^{b}=\frac{1}{2} k_{a} H_{b}{ }^{b} \tag{5}
\end{equation*}
$$

by substitution of (4) into the gauge condition $\bar{h}^{a b}{ }_{, b}=0$.
We also note that

$$
\begin{equation*}
H_{a b} \mapsto H_{a b}+2 k_{(a} v_{b)} \tag{6}
\end{equation*}
$$

for any v_{a} leaves (5) unchanged,, so solutions are arbitrary up to (6).
By direct substitution of (4) into (1) and computation, we find $R_{a b c d} k^{d}=O\left(\epsilon^{2}\right)$.
Finally, if $k^{a}=k(1,0,0,1)$ then to leading order $k_{a}=k(-1,0,0,1)$, and (5) requires

$$
\begin{aligned}
H_{00}+H_{03} & =-\frac{1}{2} H \\
H_{10}+H_{13} & =0 \\
H_{20}+H_{23} & =0 \\
H_{30}+H_{33} & =\frac{1}{2} H
\end{aligned}
$$

and by (6) we can without loss of generality set $H=0$ and $H_{0 i}=0$, leaving

$$
H_{a b}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & H_{11} & H_{12} & 0 \\
0 & H_{21} & -H_{11} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

In this we note that $H_{a b}$ must be symmetric by symmetry of the metric tensor, and thus there are 10 degrees of freedom. Gauge condition (5) fixes 4 and (6) reduces it further by 4 , leaving 2 degrees of freedom in the final form.

References

[1] General Relativity, Examples Sheet 4. DAMTP Mathematical Examples, Faculty of Mathematics, University of Cambridge. Retrieved on 24/05/16 at http://www.damtp.cam.ac. uk/user/examples/D22d.pdf.

